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Abstract
A new perspective for the anharmonic oscillator problem based on the SU(2)
group method (SGM) is provided. One finds that the SGM is a possible
unified approach to treat both the harmonic oscillator and the anharmonic
oscillator, although for the latter only part of the energy spectrum can be
obtained. Coordinate translation x → x + λ for the anharmonic potential is also
discussed, as one expects that the energy spectrum of an anharmonic oscillator
is not affected by the translation.

PACS numbers: 03.65.Nk, 02.20.−a

1. Introduction

One of the basic problems of non-relativistic quantum mechanics is to find the energy spectrum
and eigenfunctions of a microsystem governed by the Schrödinger equation with an appropriate
potential. Exact solutions of this equation are found for a limited class of potentials such as
the harmonic oscillator (HO), the Coulomb potential and others. An anharmonic oscillator
(AHO) has played an important role in the evolution of many branches of quantum mechanics.
It serves as a basis for checking different approximate methods in quantum mechanics, the
simplified counterpart of field-theoretical models, etc. Apart from this, it is of interest in its
own right since the real world certainly deviates from the idealized picture of HOs due to
the anharmonic interaction. The pioneering work of Simon [1] and Bender and Wu [2] has
generated a vast amount of literature on AHOs. An overview of the work before 1980 can be
found in the article by Killingbeck [3], and the current references can be found in [4–9].
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In spite of its seeming simplicity, it is not an easy problem to find the energy spectrum
and eigenfunctions of an anharmonic interaction. The standard way of solving this problem is
to invoke perturbation theory. Perturbation series for any physical characteristics are typically
asymptotic ones, i.e. they have a zeroth radius of convergence. Moreover, summation methods
are required to account for higher order corrections. As a result such a method can be quite
cumbersome. A thorough discussion of these difficulties has been given by Stevenson [10].
Indeed, numerous numerical methods, including renormalized strong-coupling expansion,
renormalized perturbation expansion, supersymmetric quantum mechanics, WKB, iteration
based on the generalized Bloch equation, state-dependent diagonalization, the Hill determinant
method, the phase-integral approach, iterative Bogoliubov transformations, the eigenvalue
moment method, the perturbative variation and the algebraic method, have been proposed
to investigate the AHOs [11–27]. Recently, a general procedure based on shift operators
has been formulated to deal with the AHO [9]. Under some definite consistency relations,
analytic expressions for the exact ground-state energy can be derived for a large class of one-
dimensional oscillators with cubic–quartic anharmonic potential V (x) = αx2 + βx3 + γ x4.
The analytic results agree with the existing numerical methods, such as the method of state-
dependent diagonalization and the divergent perturbation expansion. However, due to its
inherent intractability, no further analytic solution for the energy spectrum and eigenstates has
been obtained. Hence, under such a circumstance, it is appropriate to look for a new efficient
method, so that new analytic solutions of energies and eigenstates can be obtained.

The aim of this paper is to provide a new perspective for the AHO based on the SU(2)
group method (SGM). Strange as it may seem, to the best of our knowledge, the SGM has
not been discussed in the literature in spite of the developed formalism relating realization
of Lie algebras in Fock space and properties of differential equations. It is well known that
generators {â, â+, Î } form the Heisenberg–Weyl group:

[â, â+] = Î [â, Î ] = [â+, Î ] = 0 (1)

where Î is the identity operator and â and â+ are annihilation and creation operators. The
number operator can be constructed as N̂ = â+â, whose eigenstates |n〉 (n = 0, 1, . . .) with
corresponding eigenvalues n span the Fock space. Well known realization of â and â+ through
x and d/dx is

â = 1√
2

(
x +

d

dx

)
â+ = 1√

2

(
x − d

dx

)
. (2)

In terms of these generators, the Hamiltonian of the harmonic oscillator H = (−d2/dx2 +
x2)/2 (in units of h̄ = m = ω = 1) can be written as H = â+â + Î /2. Expressed in this
latter form, one may say that H has been factorized into shift operators â and â+. However,
we would like to stress here that H can always be written in terms of the generators of the
Heisenberg–Weyl algebra. Moreover, our ability to reduce it to a simpler form often results
in better insight and understanding. Since the eigenvalues of N̂ and Î are known, the energy
spectrum En = n + 1/2 of the HO can then be obtained immediately. Indeed, there are other
kinds of realizations for â and â+, such as

â = d

dx
â+ = x. (3)

For this case H can be written in terms of generators of Heisenberg–Weyl algebra as H =
[−â2 + (â+)2]/2, but such a form is generally not helpful for determining the energy spectrum.
The above example of a HO tells us that, if we want to determine the energy spectrum of a
general Hamiltonian H ≡ H(x, d/dx) = −d2/dx2 + V (x) by a group theoretic method [28],
we should first select an appropriate group as well as a suitable realization of its generators
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formed by using x and d/dx. Further analysis shows that the Heisenberg–Weyl group and
realizations of its generators in equation (2) which work well for a HO do not work well for
an AHO. Thus, in order to deal with the eigenvalue problem of an AHO, we need to resort to
other kinds of Lie groups. Naturally, a good candidate could be the SU(2) group represented
by

[j+, j−] = 2j0 [j0, j±] = ±j±. (4)

According to [29], the generators j± and j0 are realized as

j+ = 2jξ − ξ2 d

dξ
j0 = −j + ξ

d

dξ
j− = d

dξ
(5)

which act on a space of polynomials of degree ξ2j , i.e. the eigenfunctionφ(ξ) = ∑2j
m=0 amξ

m,
where j (j = 0, 1/2, 1, . . .) is the spin (note that j−ξm = 0 if m = 0, and j+ξ

m = 0 if m =
2j).

Now for the Schrödinger equation

H� =
(

− d2

dx2 + V (x)

)
� = E� (6)

after performing the following transformation

�(x) = exp

(
−

∫ x

0
W(x) dx

)
ψ(x) (7)

we obtain from equation (6) that

Hψ =
(

− d2

dx2 + 2W
d

dx
− (W 2 − W ′ − V )

)
ψ = Eψ. (8)

Transforming the variable x to ξ by ξ = f (x) in the above equation, one then obtains

Hφ =
(

−f ′′(x)
d

dξ
− [f ′(x)]2 d2

dξ2 + 2W(x)f ′(x)
d

dξ

− [W 2(x)− W ′(x)− V (x)]
)
φ = Eφ. (9)

The next task is to write the H in equation (9) in terms of a combination of the SU(2) generators,
based on which, all or some of the energies and eigenfunctions can be constructed.

This paper is organized as follows. In section 2, we apply the SGM to the usual HO, so that
one could understand better how the technique works for the AHO in section 3. Translation
of the coordinate x for V(x) is discussed in section 4. We end the paper with some relevant
discussions in the last section.

2. Applying SGM to the usual harmonic oscillator

In this section, we apply the SU(2) group method to the usual HO. Although the results in this
case are well known, this simple model provides much insight into our technique and serves
as a good instructive tool for the same formulation in the anharmonic case. The Hamiltonian
of the HO is given by

H = 1

2

(
− d2

dx2 + V (x)

)
V (x) = x2. (10)

The function W(x) is taken to be W(x) = x, which yields W 2(x)−W(x)−V (x) = −1. Let
ξ = f (x) = x, so from equations (9) and (10) we find

Hφ = 1

2

(
− d2

dξ2 + 2ξ
d

dξ
+ 1

)
φ = Eφ (11)
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which can be written in terms of j± and j0 as

Hφ = 1
2

[
Aj2

− + Cj0 + K
]
φ = Eφ A = −1 C = 2 K = (1 + 2j). (12)

Since [H, j2] = 0, where j is the spin angular momentum, we can chooseφ(ξ) = ∑2j
m=0 amξ

m

to be common eigenfunctions of H and j2. For j = 0, it is easy to have φ0(ξ) = 1, so that the
energy

E0 = K
2 = 1

2 (13)

with the corresponding eigenfunction

�0(x) = exp

(
−

∫ x

0
W(x) dx

)
= exp

(
−1

2
x2

)
. (14)

To determine the spectrum, we shall treat the eigenvalue problem corresponding to
equation (12) as a matrix eigenvalue problem. To do this, we shall consider the (2j + 1) ×
(2j + 1)matrix representation of the operators j± and j0. It is instructive to proceed inductively
starting with j = 1/2, 1, 3/2, . . . .

(i) j = 1/2. In this case,

j+ =
(

0 1
0 0

)
j− =

(
0 0
1 0

)
j0 = 1

2

(
1 0
0 −1

)
. (15)

Substituting equation (15) into equation (12), one has

Gφ = 0 G =
(

C
2 + K − 2E 0

0 −C
2 + K − 2E

)
. (16)

Recognizing detG = 0 immediately yields the energies

E
−1/2
j=1/2 = 1

2 E
1/2
j=1/2 = 3

2 (17)

or En = n + 1/2 (n = 0, 1, . . . , 2j = 1) with the corresponding eigenfunctions

φ
−1/2
j=1/2 =

(
0
a0

)
≡ a0 φ

1/2
j=1/2 =

(
a1

0

)
≡ a1ξ. (18)

Here we have used the notation φ(ξ) = (a2j , a2j−1, . . . , a1, a0)
T ≡ ∑2j

m=0 amξ
m, where

T denotes the transpose of an array.
(ii) j = 1. In this case,

j+ =
√

2


 0 1 0

0 0 1
0 0 0


 j− =

√
2


 0 0 0

1 0 0
0 1 0


 j0 =


 1 0 0

0 0 0
0 0 −1


 . (19)

After substituting equation (19) into equation (12), one has

Gφ = 0 G =

C + K − 2E 0 0

0 K − 2E 0
2A 0 −C + K − 2E


 . (20)

From detG = 0, we have a cubic algebraic equation for the energy E:

(C + K − 2E)(K − 2E)(−C + K − 2E) = 0. (21)

Solving the algebraic equation (21), we have

E−1
j=1 = 1

2 (K − C) = 1
2 E0

j=1 = 1
2K = 3

2 E1
j=1 = 1

2 (K + C) = 5
2 (22)
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or En = n + 1/2 (n = 0, 1, . . . , 2j = 2) with the eigenfunctions

φ−1
j=1 =


 0

0
a0


 ≡ a0 φ0

j=1 =

 0
a1

0


 ≡ a1ξ

φ1
j=1 =


Ca0/A

0
a0


 ≡ a0(1 − 2ξ2). (23)

Actually, φ−1
j=1, φ

0
j=1 andφ1

j=1 correspond to the first three respective Hermite

polynomials. Interestingly, for the usual HO, it can be observed that E−1/2
j=1/2 = E−1

j=1

andE1/2
j=1/2 = E0

j=1

(
orφ−1/2

j=1/2 = φ−1
j=1 andφ1/2

j=1/2 = φ0
j=1

)
.

(iii) For arbitrary j. Using

j±|jm〉 =
√
(j ∓ m)(j ± m + 1)|j,m ± 1〉 j0|jm〉 = m|j,m〉 (24)

the (2j + 1)× (2j + 1) matrix representations of j± and j0 are

j+ =




0
√

1 · 2j 0 0 · · · · · ·
0 0

√
2 · (2j − 1) 0 · · · · · ·

0 0 0
√

3 · (2j − 2) · · · · · ·
...

...
...

...
. . .

...
...

0 0 0 0 · · · √
(2j − 1) · 2 0

0 0 0 0 0
√

2j · 1
0 0 0 0 0 0




j− =




0 0 0 0 0 0√
1 · 2j 0 0 0 0 0
0

√
2 · (2j − 1) 0 0 0 0

...
...

. . .
...

...
...

...

0 0 · · · √
(2j − 2) · 3 0 0 0

0 0 0
√
(2j − 1) · 2 0 0

0 0 0 0
√

2j · 1 0




j0 =




j

j − 1
j − 2

. . .

−j + 2
−j + 1

−j



. (25)

Similarly, we obtain En = n + 1
2 (n = 0, 1, . . . , 2j), with the eigenfunctions φmj (m =

−j,−j + 1, . . . , j ) which correspond to the first 2j + 1 Hermite polynomials. Also, one
can find that the energies Em′

j ′ (j ′ = j − 1, m = −j ′,−j ′ + 1, . . . , j ′) are just the first
2j ′ + 1 (=2j − 1) energies of Em

j (m = −j,−j + 1, . . . , j ) this originates from the fact
that the energy spectrum of a HO is equally spaced. One expects that the SGM is also
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applicable for an AHO. However, the finding, i.e. Em′
j ′ ’s are just the first 2j ′ + 1 energies

of Em
j ’s, will not be applicable for an AHO, since the energy spectrum of an AHO is

generally not equally spaced.

In passing we would like to point out that, since the HO is the simplest model, there exists
another simpler method to tackle the eigenvalue problem of equation (12), instead of adopting
the (2j + 1)× (2j + 1) matrix representation of j± and j0. The simpler method is to introduce
a similarity transformation for equation (12) using the operator U = exp(−j2−/2), giving the
Hamiltonian H ′

H ′ = UHU−1 = 1
2 [Cj0 + K]. (26)

It is known that the eigenvalues of H ′ are the same as those of H under the similarity
transformation. Since the eigenfunction of H ′ is just ξn (n = 0, 1, 2, . . .) with the
corresponding eigenfunction

�n(x) = exp
(
− 1

2x
2
)

exp
(
− 1

2j
2
−
)
ξn. (27)

The eigenvalue of j0 is obtained to be (n − j), thus eigenvalues of H ′ are

E′
n = 1

2 [(n − j)C + K] = n + 1
2 (n = 0, 1, . . .) (28)

which are nothing but the energies of the usual HO.

3. Applying SGM to the anharmonic oscillator

In this section, we confine ourselves to the one-dimensional HO with the anharmonic potential
containing cubic and quartic terms. However, the procedure developed here could be applied
to some other types of anharmonic potentials. The Hamiltonian reads

H = − d2

dx2 + V (x) V (x) = αx2 + βx3 + γ x4. (29)

In this case, the corresponding function W(x) for the above equation can be chosen as

W(x) = µx2 + τx + ν (30)

so that the degree of x in the expression

W 2(x)− W ′(x)− V (x) = (µ2 − γ )x4 + (2µτ − β)x3 + (τ 2 + 2µν − α)x2

+ (2τν − 2µ)x + ν2 − τ (31)

is not greater than 2. In other words, we require that µ2 − γ = 0 and 2µτ − β = 0, which
yield

µ1 = √
γ τ1 = β

2
√
γ

or µ2 = −√
γ τ2 = − β

2
√
γ
. (32)

Correspondingly, we have

W1(x) = µ1x
2 + τ1x + ν = √

γ x2 +
β

2
√
γ
x + ν

(33)
W2(x) = µ2x

2 + τ2x + ν = −√
γ x2 − β

2
√
γ
x + ν.

For W1(x), we have

W 2
1 (x)− W ′

1(x)− V (x) =
(
β2

4γ
+ 2ν

√
γ − α

)
x2 +

(
βν√
γ

− 2
√
γ

)
x + ν2 − β

2
√
γ
. (34)
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Then from equation (8) we find

Hψ =
(

− d2

dx2
+ 2

(√
γ x2 +

β

2
√
γ
x + ν

)
d

dx
−

[(
β2

4γ
+ 2ν

√
γ − α

)
x2

+

(
βν√
γ

− 2
√
γ

)
x + ν2 − β

2
√
γ

])
ψ = Eψ. (35)

Choosing ξ = f (x) = x, the above equation becomes

Hφ =
(

− d2

dξ2 + 2

(√
γ ξ2 +

β

2
√
γ
ξ + ν

)
d

dξ
−

[(
β2

4γ
+ 2ν

√
γ − α

)
ξ2

+

(
βν√
γ

− 2
√
γ

)
ξ + ν2 − β

2
√
γ

])
φ = Eφ. (36)

Now in order to write H in terms of a combination of the SU(2) generators j± and j0, we
set

Hφ =
(
Aj2

− + Bj+ + Cj0 + Dj− + K
)
φ = Eφ (37)

where A, B, C, D and K are constants to be determined. After substituting the expressions for
j± and j0 as given in equation (5) into equation (37), we obtain

Hφ =
(
A

d2

dξ2 + (−Bξ2 + Cξ + D)
d

dξ
+ 2jBξ + K − jC

)
φ = Eφ. (38)

Comparing equations (36) and (38) we find

A = −1 −B = 2
√
γ C = β√

γ
D = 2ν 2jB = − βν√

γ
+ 2

√
γ

K − jC = −ν2 +
β

2
√
γ

β2

4γ
+ 2

√
γ ν − α = 0

giving the explicit solution

A = −1 B = −2
√
γ C = β√

γ
D = 2ν

K =
(
j +

1

2

)
C − ν2 ν = 2γ

β
(1 + 2j) (39)

subject to the constraint

β2

4γ
+ 2

√
γ ν − α = 0 or

β2

4γ
+ 4

γ 3/2

β
(1 + 2j)− α = 0. (40)

Obviously, when j = 0, the constraint condition becomes

β2

4γ
+ 4

γ 3/2

β
− α = 0 (41)

which is naturally simply the constraint given in equation (47) of [9].
Again, since [H, j2] = 0, φ(ξ) = ∑2j

m=0 amξ
m could be the common eigenfunctions of

H and j2. For j = 0, it is easy to have φ0(ξ) = 1, thus the energy is

E0 = K = −ν2 +
β

2
√
γ

= −4
γ 2

β2 +
β

2
√
γ

(42)

with the corresponding eigenfunction

�0(x) = exp

(
−

∫ x

0
W1(x) dx

)
= exp

[
−

(
1

3
√
γ x3 +

1

4

β√
γ
x2 + νx

)]
. (43)
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As a wavefunction, �0(x) should be normalizable, i.e.
∫ +∞
−∞ |�0(x)|2 dx = finite number.

Therefore, in addition, those values of α, β andγ resulting in
∫ +∞
−∞ |�0(x)|2 dx → ∞ should

be ruled out.
Now to determine the spectrum, we shall treat the eigenvalue problem corresponding to

equation (37) as a matrix eigenvalue problem. As in section 2, it is instructive to work out the
cases j = 1/2, 1, 3/2, . . . successively.

(i) j = 1/2. In this case, we have

Gφ = 0 G =
( C

2 + K − E B

D −C
2 + K − E

)
. (44)

From detG = 0, we have the energies

E
−1/2
j=1/2 = K −

√
C2

4
+ BD E

1/2
j=1/2 = K +

√
C2

4
+ BD (45)

with the corresponding eigenfunctions

φ
−1/2
j=1/2 =

(
a1

a0

)
≡ a0 + a1ξ φ

1/2
j=1/2 =

(
a′

1
a′

0

)
≡ a′

0 + a′
1ξ (46)

where

a0 = 1 a1 = 1 +
C
2 −

√
C2

4 + BD

D
a′

0 = 1

(47)

a′
1 = 1 +

C
2 +

√
C2

4 + BD

D
.

(ii) j = 1. In this case, we have

Gφ = 0 G =


C + K − E

√
2B 0√

2D K − E
√

2B

2A
√

2D −C + K − E


 . (48)

From detG = 0, we have a cubic algebraic equation regarding energy E given by

(K − E)3 + p(K − E) + q = 0 p = −(C2 + 4BD) q = 4AB2. (49)

Provided R = p3

27 + q2

4 < 0, the solutions are

E−1
j=1 = K − r cosu E0

j=1 = K − r cos

(
u +

2π

3

)
(50)

E1
j=1 = K − r cos

(
u +

4π

3

)
where

r =
(

−4p

3

)1/2

u = 1

3
cos−1

[
−q

2

(
−p

3

)−3/2
]
. (51)

When R � 0, equation (49) has only one real root

E =
(
−q

2
+

√
R

)1/3
+

(
−q

2
−

√
R

)1/3
. (52)
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(iii) For arbitrary j, from detG = 0, we will have a (2j + 1)-degree algebraic equation
for energy E under a definite constraint as shown in equation (40). In general, using
numerical computations, we could obtain 2j + 1 energies Em

j ’s. However, as one can
observe, Em′

j ′ (j ′ = j − 1,m = −j ′,−j ′ + 1, . . . , j ′) are not the first 2j ′ + 1 energies
of Em

j (m = −j,−j + 1, . . . , j ), since the energy spectrum of an AHO is generally not
equally spaced.
Similarly, for W2(x) one has

Hφ = (
A′j2

− + B ′j+ + C′j0 + D′j− + K ′)φ = Ẽφ (53)

where

A′ = −1 B ′ = 2
√
γ C′ = − β√

γ
D′ = 2ν

(54)
K ′ =

(
j +

1

2

)
C′ − ν2 ν = 2γ

β
(1 + 2j)

with accompanying constraint

β2

4γ
− 2

√
γ ν − α = 0 or

β2

4γ
− 4

γ 3/2

β
(1 + 2j)− α = 0. (55)

In particular, for j = 0, the constraint condition simplifies considerably as

β2

4γ
− 4

γ 3/2

β
− α = 0 (56)

which naturally derives the constraint in equation (44) of [9]. It is easy to have φ0(ξ) = 1,
and the energy is

Ẽ0 = K ′ = −ν2 − β

2
√
γ

= −4
γ 2

β2 − β

2
√
γ

(57)

with the corresponding eigenfunction

�̃0(x) = exp

(
−

∫ x

0
W2(x) dx

)
= exp

[
1

3
√
γ x3 +

1

4

β√
γ
x2 − νx

]
. (58)

The spectrum can be obtained by treating the eigenvalue problem in equation (53) as a
(2j + 1) × (2j + 1)-matrix eigenvalue problem. We find that the forms of eigenvalues
and eigenfunctions are the same as those for the case with W1(x), simply by replacing
A,B, . . . ,K withA′, B ′, . . . ,K ′.

4. Translation in x for the potential V(x) = αx2 + βx3 + γx4

In this section, we briefly consider the effects of a translation in the coordinate x for the
anharmonic potential. For simplicity, we set γ = 1 and denote V1(x) = αx2 + βx3 + x4.
Using the transformation x → ρx + λ, we have

V2(x) = V1(ρx + λ) = ρ4x4 + ρ3(4λ + β)x3 + ρ2(6λ2 + 3βλ + α)x2

+ ρλ(4λ2 + 3βλ + 2α)x + λ2(λ2 + βλ + α). (59)

From the physical point of view, when ρ = 1, the coordinate translation x → x + λ should
not alter the energy spectrum of H1 = −d2/dx2 + V1(x). For instance, if we choose
4λ + β = 0, 6λ2 + 3βλ + α = 0, i.e.

λ = −β

4
α = 3β2

8
(60)
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equation (59) then becomes

V2(x) = x4 + gx + v g = −β3

16
v = 3

(
β

4

)4

. (61)

In the following, the SGM is applied to the AHO H2 = −d2/dx2 + V2(x). We can show that
the energy spectrum of H2 is indeed the same as that of H1 provided the constraint as shown
in equation (40) (or equation (55)) is prescribed.

The function W(x) corresponding to equation (61) can be expressed as W(x) = ax2 + b

with our usual requirement that the degree of x in the function

W 2(x)− W ′(x)− V2(x) = (a2 − 1)x4 + 2abx2 − (2a + g)x + b2 − v (62)

be less than or equal to two. Thus, a = 1 ora = −1 and we haveW1(x) = x2 +b, orW2(x) =
−x2 + b. For W1(x), equation (63) leads to

H2ψ =
(

− d2

dx2 + 2(x2 + b)
d

dx
− [2bx2 − (2 + g)x + b2 − v]

)
ψ = εψ. (63)

Using ξ = f (x) = x, the above equation becomes

H2φ =
(

− d2

dξ2 − 2

(
2jξ − ξ2 d

dξ

)
+ 2b

d

dξ

− 2bξ2 + (4j + 2 + g)ξ − b2 + v
)
φ = εφ. (64)

If we set b = 0 andg = −2 − 4j , then we can write H2 as

H2φ =
(
−j2

− − 2j+ + v
)
φ = εφ. (65)

For spin j = 0 (in this case g = −2), it is easy to have φ0(ξ) = 1, thus the energy is ε0 = v.
Substituting α = 3β2/8, β and γ = 1 into the constraint (41), one has β = 25/3. So it is
easy to verify that ε0 = E0 = 3 × 2−4/3, i.e. the ground-state energy is invariant under the
translation x → x + λ. The same conclusion is also valid for the cases with j = 1/2 and
j = 1. A similar analysis can be made for W2(x), one could find that ε̃0 is identical to Ẽ0.

5. Discussion

To summarize, we have provided a new perspective on the AHO problem using a technique
based on the SU(2) group theory. The SGM is found to be a possible unified approach for
treating the HO and the AHO, and in the latter case, one can in fact obtain part of the energy
spectrum. Such an approach is an example of the so-called quasi-exactly solvable models [30].
We have also discussed the effects on the energy spectrum due to a translation of coordinate
x for the anharmonic potential. As one would expect, the energy spectrum of an AHO is not
affected by the transformation x → x + λ. Unlike the case in a HO, there are usually some
constraint conditions for the coefficients α, β andγ in the anharmonic potential V (x). If we
rewrite equation (40) as

α − β2

4γ

4 γ 3/2

β

= (1 + 2j) = positive integers (66)

then the constraint condition becomes a very interesting one since it seems to play a role much
akin to a quantization condition.1 However, a deeper meaning behind these constraints for an
AHO is still under investigation.
1 Note that this condition refers to part of the spectrum.
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It is known that the local behaviour of most solvable potentials reduces to that of the HO
or the Pöschl–Teller (PT) potential [31]. We would eventually envisage the possibility that the
SGM is also applicable for the PT Hamiltonian: HPT = −d2/dx2 + [ν(ν − 1)k2/ cos2(kx)].
If setting W(x) = kν tan(kx) and ξ = f (x) = sin(kx), we will arrive at HPT φ =
k2

[− j2− + (j0 + j + ν)2
]
φ = Eφ. For j = 0, one has �0(x) = cosν(kx) andE0 = k2ν2, which

are simply the ground state and the corresponding energy, respectively.
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